MMS Community Workshop, Yosemite, CA, Feb. 19-21, 2019

How neutral is quasi-neutral?

Charge density in the reconnection diffusion region observed by MMS

MMS MAGNETOSPHERIC MULTISCALE

M. R. Argall, J. R. Shuster, I. Dors, K. J. Genestreti, T. K. M. Nakamura, R. B. Torbert, J. M. Webster, N. Ahmadi, R. E. Ergun, R. J. Strangeway, B. L. Giles, and J. L. Burch

Outline

- Picture of ρ in the Hall system
- ρ in the magnetotail diffusion region
- ϱ in other contexts
 - Magnetopause reconnection
 - Electron-scale magnetic peak
 - Electron phase space hole
- Errors
- Scalar potential
- Summary

Q

Magnetotail EDR

Hall System

- E balanced largely by JxB/ne
 - E_{Hall} weak at edges of IDR
- J supports +B_Y
 - \circ -J_z as e- flow into X-line,
 - +J_x as e- jet into tail exhaust
- $\rho > 0$ ($\rho < 0$) in outer (inner) diffusion region
- ~1x10⁻⁴ excess electrons

6

CS Encounter

REGION I

- E & B among spacecraft diverge -> enter IDR
- $\varrho > 0$

REGION II

- Current peaks in EDR
- ϱ becomes negative

REGION III

- E & B among spacecraft converge -> exit IDR
- $\varrho > 0$

Q

In Other Contexts

MP Encounter

Electron Phase Space Hole

Holmes, et al., JGR 2018

General Error Formula

$$\sigma_{f(x_1,x_2,\ldots)}^2 = \left(\frac{\partial f}{\partial x_1}\sigma_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\sigma_{x_2}\right)^2 + \ldots$$

Variance of $\nabla \cdot E$, $\nabla \times E$, $-\partial B/\partial t$: gradient approximated as average of unique s/c-to-s/c differences

$$\sigma_{\rho/e} = \frac{\epsilon_0}{e} \sqrt{2} \frac{0.5 \, mV/m}{15 \, km} = 2.6 \times 10^{-6} cm^{-3} - \frac{10 \, \text{x} \, 10^{-4} \, \text{cm}^{-3}}{46 \, \text{nV/m}^2}$$

$$\sigma_{(\nabla \times E)_1} = \sqrt{\frac{4}{3}} \frac{0.5 \, mV/m}{15 \, km} = 3.8 \times 10^{-8} \, V/m = 38 \, nT/s$$
$$\sigma_{\dot{B}} = \sqrt{2} \frac{0.05 \, nT}{0.008 \, s} \approx 9 \, nT/s$$

E is sampled 64x faster than B so averaging reduces the error by 8.

à la Curlometer Technique

$|\nabla \times \mathbf{B}| / |\nabla \cdot \mathbf{B}|$ $= |\nabla \cdot \mathbf{E}| / |\nabla \times \mathbf{E} - \frac{\partial \mathbf{B}}{\partial t}|$

1.5

Magnetosheath Lion Roar

Scalar Potential

$\nabla \cdot E \gg |\nabla \times E| = -|\partial B/\partial t| \approx 0?$ $E = -\nabla V_{SC} \longleftarrow$

Magnetopause

23

Summary

- Charge density profiles are consistent with the Hall B, E, and J signatures
- Net negative charge is embedded in regions of net positive charge
 EDR within IDR
- ñ/N: Percent charge imbalance suggests plasma remains quasi-neutral
 - Tail: 1% Magnetic Peak: 0.25%
 - MP: 1x10⁻³% Electron Hole: 4%
- ρ is typically 1-2 orders of magnitude greater than the error threshold
- Propose $\nabla \cdot E / |\nabla \times E + \partial B / \partial t|$ as an error estimate
 - \circ $\nabla \cdot E (\nabla \times E)$ is the sum (difference) of large (small) numbers
 - \circ $\nabla \times E$ and $\partial B/\partial t$ are uncorrelated and on different scales
- $\partial B/\partial t \ll \nabla \cdot E$ would imply $E = -\nabla V$
 - Works better at the magnetopause

Thank you

Backups

Hall System (Symmetric Reconnection)

Asymmetric Reconnection

Event 2

Asymmetric Reconnection

Hall System

- E balanced by JxB/ne
 - E_x strong throughout IDR
- J supports +B_Y
 - Electrons flow into (out from) X-line along MSH (MSP) separatrix
- ñ > 0 (ñ < 0) in outer (inner) diffusion region
- ~1x10⁻⁴ excess electrons

 1x10⁻³ % of N_{MSH}

MP Encounter

REGION I

- E and B fields among spacecraft diverge -> enter IDR
- ρ > 0

REGION II

- Strong, demagnetized electron jet
- ρ changes sign

REGION III

• E and B fields among spacecraft converge -> exit IDR

 $\tilde{n}/N \sim 1 \times 10^{-3} \%$

• ρ > 0 again

Event 3

Electron-Scale Magnetic Peak

Event 4

Phase Space Hole

Holmes, et al., In Press 2018

45

Comparison to Simulations

Errors: $\rho/e = \epsilon_0/e \nabla \cdot E = n_i - n_e$

General Error Formula

$$\sigma_{f(x_1,x_2,\ldots)}^2 = \left(\frac{\partial f}{\partial x_1}\sigma_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\sigma_{x_2}\right)^2 + \ldots$$

Variance of $\nabla \cdot E$: Gradient approximated as average of unique s/c-to-s/c differences

$$\sigma_{(\nabla \cdot E)}^{2} = \sum_{i=1}^{3} \left\{ \left[\frac{\partial (\nabla \cdot E)}{\partial (\Delta E_{1i})} \sigma_{\Delta E_{1i}} \right]^{2} + \left[\frac{\partial (\nabla \cdot E)}{\partial (\Delta E_{2i})} \sigma_{\Delta E_{2i}} \right]^{2} + \left[\frac{\partial (\nabla \cdot E)}{\partial (\Delta E_{3i})} \sigma_{\Delta E_{3i}} \right]^{2} \right\}$$

$$\sigma_{(\nabla \cdot E)_{1}}^{2} = 2 \frac{\sigma_{E}^{2}}{l_{sc}^{2}}$$

$$E \approx \sqrt{2} \frac{e}{\epsilon_{0}} \sigma_{n} l_{sc}$$

$$\approx \sqrt{2} \frac{e}{\epsilon_{0}} 0.1 \, cm^{-3} 15 \, km \approx 38386 \, mV/m$$
ge neutrality: $\tilde{n} = \rho/e = \epsilon_{0}/e \, \nabla \cdot E = n_{i} - n_{o}$

In terms of charg . n – p ιy. **-**0' 1 е

$$\sigma_{\rho/e} = \frac{\epsilon_0}{e} \sqrt{2} \frac{0.5 \, mV/m}{15 \, km} = 2.6 \times 10^{-6} cm^{-3} \quad << 1.0 \times 10^{-4} \, \text{cm}^{-3}$$

Error & Quality Estimates: $\nabla \times E = -\partial B/\partial t$ $E = -\nabla V$

General Error Formula

$$\sigma_{f(x_1,x_2,\ldots)}^2 = \left(\frac{\partial f}{\partial x_1}\sigma_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\sigma_{x_2}\right)^2 + \ldots$$

Curl of E

$$\sigma_{(\nabla \times E)_{1}}^{2} = \sum_{i=1}^{3} \left\{ \left[\frac{\partial (\nabla \times E)_{1}}{\partial (\Delta E_{2i})} \sigma_{\Delta E_{2i}} \right]^{2} + \left[\frac{\partial (\nabla \times E)_{1}}{\partial (\Delta E_{3i})} \sigma_{\Delta E_{3i}} \right]^{2} \right\}$$
$$\sigma_{(\nabla \times E)_{1}}^{2} = \frac{4}{3} \frac{\sigma_{E}^{2}}{l_{sc}^{2}}$$

Typical Values

Similarly for dB/dt

$$\sigma_{(\nabla \times E)_1} = \sqrt{\frac{4}{3}} \frac{0.5 \, mV/m}{15 \, km} = 3.8 \times 10^{-8} \, V/m = 38 \, nT/s$$
$$\sigma_{\dot{B}} = \sqrt{2} \frac{0.05 \, nT}{0.008 \, s} \approx 9 \, nT/s$$

E is sampled 64x faster than B so averaging reduces the error by 8.

Quality Estimates

- As for $\nabla \cdot \mathbf{B} = 0$ with curlomter
- Two possible quality estimates:
 - **E**_{BC} = -∇V
 - $\circ \quad \nabla \times \mathbf{E} = -\partial \mathbf{B}_{\mathrm{BC}} / \partial t$
- -∂B/∂t is scaled by a factor of 10 for the (x,y,z)-components
 - \circ Low-pass filtered f_c=1Hz
- -∇V is scaled by factors of (500,260,142) for the (x,y,z)-components

52

Quality Estimates

- As for $\nabla \cdot \mathbf{B} = 0$ with curlomter
- Two possible quality estimates:
 - o $\mathbf{E}_{BC} = -\nabla V$ o $\nabla \times \mathbf{E} = -\partial \mathbf{B}_{BC} / \partial t$
- -∂B/∂t is scaled by factors of (200,200,100) for the (x,y,z)-components
 - Low-pass filtered $f_c = 1Hz$
- -∇V is scaled by a factor of 50 for the (x,y,z)-components
 - Noisier than 2015-12-06

Conclusions

- ñ is typically one order of magnitude greater than the error threshold
- Charge density profiles are consistent with the Hall B, E, and J signatures
- Net negative charge is embedded in regions of net positive charge
 - EDR within IDR
- ñ/N: Percent charge imbalance
 - MP: 1x10⁻³% Magnetic Peak: 0.25%
 - Tail: 1% Electron Hole: 4%
- Positive charge observed within
 - Electron-scale magnetic peak
 - Electron phase space holes
- Quality Considerations
 - \circ $\nabla \times E$ and $\partial B/\partial t$ are uncorrelated and on different scales
 - Despite errors being roughly equal
 - E could have smaller natural scale lengths
 - \circ ∇V and E could be consistent