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Perturbations don’t have to be large in magnitude

Magnetosheath
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Turbulence is important for the evolution of the
system in both cases
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What do we know about
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Turbulence is characterized by formation of
Intermittent structures across scales

25D

81922 grid,

300 particles/cell;
Mass ratio 25
System size 102.4 d.
(Wu et al. 2013)




Strength of electric current density in shear-driven kinetic
plasma (PIC) simulation (see Karimabadi et al, PoP
2013)

o

 Energy transfer from large to small scales
 Dissipation at small scales
« Growth of secondary plasma instabilities
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Turbulent energy cascade
Kolmogorov 1941 &1944
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Fig. 6.14. Measurements of one-dimensional longitudinal velocity spectra (symbals),
and model spectra (Eq. (6.246)) for Ry = 30, 70, 130, 300, 600, and 1,500 {lines). The
experimental data are taken from Saddoughi and Veeravalli (1994) where references
to the various experiments are given. For each experiment, the final pumber in the
key is the value of R ;.
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Turbulent energy cascade

In the solar wind

Voyager at 2.8 AU
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Turbulent energy cascade in

iIncompressible MHD
Politano & Pouquet 1998

Estimating &:
B(1)

Elsasser variables: Z*(t) = V(t) £
\/Mompni(t)

Ensemble average of  Y*(r) = (7 - AZT(r)|AZE(r)|?)
Increments

Third-order law: Y=(r) = —%éi‘



What do not know?

How does turbulent
energy dissipate at
kinetic scales



Turbulent energy cascade

Energy
containing range

Inertial range Kinetic range

turbulent

cascade

=

Injection

Energy

dissipation

X

Scale

heating
cceleration



Dissipation pathways at kinetic scales

A

§ waves in coherent structures: waves:

£ - wave generation & damping - cyclotron damping
- secondary instabilities - Landau damping

- stochastic heating

coherent structures: non-linear waves:

C - reconnection _ - steepened waves

o - scattering & acceleration - phase space holes

= - trapping & betatron - nonlinear Landau

§ - vortex dynamics damping

>

localized uniform



Intermittency and the
spatial organization of

current density
(or small scale increments)

Evidence that dissipation
preferentially

Occurs in coherent
structures!

||l — supergaussian
current sheets

Observations indicate such
regions correspond to active
reconnection

(Osman et al. 2014)
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Greco et al, 2009




In kinetic plasma, dissipation (D.: work done on particles by
E/M field) is concentrated in thin regions of strong current

From Wan et al, PRL 2012; see also Karimabadi et al, PoP 2013 aAverages of Diss
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MMS and turbulence

New capabilities:

e High time resolution
* Multi-spacecraft

- Divergence & curl

- multi-spacecraft increments

« Wide range of plasma environments



MMS and turbulence

Diagnostics:

e Temperature

e E.J

e Particle VDFs

 Non-maxwellianity, agyrotropy

e Velocity-space cascade

* Vlasov measures of dissipation, Pi-D
« Measurement of €



Turbulent energy cascade in

iIncompressible MHD
Politano & Pouquet 1998
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Statistics of dissipation and particle energization

Kinetic-scale structure in
magnetosheath turbulence

[z 13 <14 G523 Aza O34

L IIIIII| [ IIIIII| [ IIIIII| I T TTTTIT
101 __ KBZ
5 }
100 L1 IIIIII| [ IIIIII| L1 IIIIII| [ R
107° 107" 10° 10" 10°
" 0d)
. . . & ) ) [Chibber et al. JGR 2018]
Distribution of current density in o
Magnetic field increments
magnetosheath turbulence
4 < (bu; ()t >
k(@) = <@u )" > (6uyj () * >¢

< (Su; ()2 >,° < (Suyj ()2 >,



Statistics of dissipation and particle energization

e Electron heating
predominantly parallel to
the magnetic field for
regions of strongest
current

 Possibly consistent with
active reconnection

—e— Total
| = & =Parallel
--@-= Perpendicular '

J/ o

[Chasapis et al. ApJLett, 2018]



Statistics of dissipation and particle energization

. - . . . ° | | | ' ' ' o
e Significant dissipation —e—D', MMS
in regions of strong -e-D PIC3D
| |-=-D_PIC3D J/
current = 4 - .
2
- Consistent with results > |
from 3D PIC simulations
(e.g. Wan et al. 2015) "I

J/lo
[Chasapis et al. ApJLett, 2018]



Pathways of Energy conversion in turbulence

~local-in-scale cascade Work by e/m
= field on
particles

electromagnetic enﬁg»y/

small « ~— large
I al
peales fluid flow energy L
& i i i

SN .
T Y x r
thermal (random) energy

e Fluid energy 3ﬁ<E§:> — <(Pa: ' V) ' “a) + (naq&E *“af:):
+ Thermalenergy &, (EY) = —((P, - V) - ),
 Magnetic energy é)t(Em) — _<E J>



Pathways of Energy conversion in turbulence
Yan et al. PoP 2017

e TWO reconnection

Anti parallel, Low guide

events In the field Reconnection ﬁf;‘;ﬁ;%?%de'ﬁeld (~1.3)
magnetosheath (plasmaB~13) o |
(reported in Wilder et al. JGR € of ]
2018) ey §
- % o]
* Both show: ]
- increase of 8 ol
electron temperature -
- positive E.J
Energy transfer from the - <=
fields to the particles o i}
At the point of B CET T oo T
observation: Electrons are being Electrons are
heated here cooling here

Electron heating vs
cooling



Velocity-space cascade

Hermite decomposition of velocity distributions

MMS particle distributions in the magnetosheath (ions)

e Decomposition of particle
distributions using Hermite
polynomials

e Used to study perturbations in Q0
velocity space e

MMS observations in the Earth's magnetosheath.
(Left) Visualization of 3D ion measurements by FPI.
Fine scale distortions are visible.



Velocity-space cascade

Hermite decomposition of velocity distributions

Hermite spectrum

MMS magnetosheath data
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FIG. 1: Power spectrum of the Hermite modes, for the MMS
dataset. The best fit to a power law m® gives a ~ —1.5, with
an error of ~ 12%,.
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* Observations suggest “cascade” in velocity space

« Agreement with Vlasov simulations and some theoretical predictions

[Servidio et al. PRL, 2018]



Afterword.:
MMS turbulence campaign

 Unequal separation allows direct
measurements at scales of interest

* Long time-series permit meaningful
statistics

* High time resolution for kinetic scale
phenomena

Neither was done before in solar wind plasma



Thank you
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