$2^{\text {nd }}$ Order Field Reconstruction: Method and Applications

Ivan Dors, R. B. Torbert, M. R. Argall, K. J. Genestreti, R. E. Denton,
D. Payne, R. Strangeway, R. E. Ergun,
B. L. Giles, J. L. Burch

Goal

- Reconstruct the 3D \vec{B} field to $2^{\text {nd }}$-order polynomial using the \vec{B} and \vec{J} at $4 \mathrm{~s} / \mathrm{c}$ locations.

$$
\left.B_{i}^{\prime}(\vec{x}) \cong B_{i}\right|_{0}+\left.\sum_{k}^{\text {1st Order }} \partial B_{k i}\right|_{0} x_{k}+\left.\frac{1}{2} \sum_{k l} \partial \partial B_{k l i}\right|_{0} x_{k} x_{l}
$$

2nd Order

$1^{\text {st }}$-Order Parameter Overview

- Knowns: 12
$3 \vec{B}$ components $\times 4 \mathrm{~s} / \mathrm{c} \rightarrow 12$
- Unknowns: 12

$$
\begin{array}{ll}
B_{i} \rightarrow 3 & \text { Elements of } \vec{B} \text { at origin } \\
\partial B_{i j} \rightarrow 3 \times 3=9 & \text { Elements of the } \nabla \vec{B} \text { tensor about origin }
\end{array}
$$

- Constraints: 0

1B1	=	1	1X	1Y	12										B1
2B1		1	2X	2Y	$2 Z$										dB11
3B1		1	3X	3Y	32										dB21
4B1		1	4X	4Y	4Z										dB31
1B2						1	1X	1Y	12						B2
2B2						1	2X	2 Y	$2 Z$						dB12
3B2						1	3X	3Y	32						dB22
4B2						1	4X	4Y	4Z						dB32
1B3										1	1X	1Y	12		B3
2B3										1	2X	2Y	$2 Z$		dB13
3B3										1	3X	3Y	$3 Z$		dB23
4B3										1	4X	4Y	4Z	x	dB33

$2^{\text {nd }}-O r d e r$ Parameter Overview

- Knowns: 24
$3 \vec{B}$ components $\times 4 \mathrm{~s} / \mathrm{c} \rightarrow 12$
$3 \vec{J}$ components $\times 4 \mathrm{~s} / \mathrm{c} \rightarrow 12$
- Unknowns: 27

```
Bi}->3\quad Elements of \vec{B}\mathrm{ at origin
\partial\mp@subsup{B}{ij}{}->3\times3=9
\partial\partial\mp@subsup{B}{ijk}{}->3\times3\times3=27
\partial斻k}=\partial\partial\mp@subsup{B}{jik}{}->-9\quad\mathrm{ Clairaut's theorem for continuous functions
\partial\partial\mp@subsup{B}{22k}{}=0->-3 Assume linear behavior in M-direction (NML system)
```

- Constraints: 4
$\nabla \cdot \vec{B}=0 \rightarrow 4$
1 for traceless $\nabla \vec{B}$ tensor; 3 to be true in all space: $\nabla(\nabla \cdot \vec{B})=0$

24+4-27 = 1 more unknown (degree of freedom) is allowed.
A cubic term is incorporated to make the system solvable under all conditions.
8 unique cubic terms are used without affecting $\nabla \cdot \vec{B}$
Each produces a similar result.

Reconstruction Method

$$
\left(\begin{array}{c}
\text { K } \\
n \\
o \\
w \\
n \\
s
\end{array}\right)=\left(\begin{array}{c}
\\
\text { Taylor } \\
U \\
n \\
k \\
n \\
0 \\
w \\
n \\
s
\end{array}\right)
$$

- The linking matrix is between 24×24 to 31×31 depending on how the constraints are applied.
- The matrix is inverted to solve for the Taylor expansion coefficients.
- This is repeated for each of the 8 unique cubic terms.
- The 8 results are combined into one set of coefficients weighted inversely by the magnitude of the cubic parameter.
- The resulting coefficients allow for the approximation of $\vec{B}(\vec{x}) \& \vec{J}(\vec{x})$

$$
\left.B_{i}{ }^{\prime}(\vec{x}) \cong B_{i}\right|_{0}+\left.\sum_{k} \partial B_{k i}\right|_{0} x_{k}+\left.\frac{1}{2} \sum_{k l} \partial \partial B_{k l}\right|_{0} x_{k} x_{l}
$$

Limitations

- Results degrade if the basis functions do not describe the fields.
- Small structures unresolved by the s/c greatly affect the results
- This is partially addressed by temporal filtering to focus on the spatial scale of interest: $\tau \sim l_{s c} / v_{s t r u c t u r e ~}$
- Results degrade as approximations are made further from the s / c.
- Extrapolation errors are expected and are unavoidable
- Reconstruction of simulation data helps quantify this limitation
- These limitations are not unique to this method.

$1^{\text {st }}$ Order B Result Using Simulation

$2^{\text {nd }}$ Order B Result Using Simulation

Curl(B) $/ \mu_{0}$ Comparison

Unfocused

Focused inside tetrahedron

\uparrow Simulation check

J Reconstruction Comparison

Unfocused

Focused inside tetrahedron

\downarrow Simulation check
Sim Curl $\{\mathrm{B})_{-y} / \mathrm{muO}[\mathrm{nA} / \mathrm{m} \times 2$]

$\left(\nabla \times \vec{B} / \mu_{o}-\vec{J}\right)$ Comparison

$1^{\text {st }}$ order B \& J results violate Ampere's law, even at the barycenter. Simulation and $2^{\text {nd }}$ order reconstruction obey Ampere's law.

\vec{E} Field Reconstruction

- E reconstruction is possible by applying the same method.
- Subtle differences exist

$$
\begin{gathered}
\nabla \cdot \vec{E} \\
\nabla \times \vec{E}
\end{gathered}
$$

\vec{E} Field Reconstruction Limitations $\nabla \cdot \vec{E}$

- Charge density is a new input parameter.
- It is approximated by the trace of the $\nabla \vec{E}$ tensor.
- Currently, this scalar result is applied throughout the 3D domain.
- This results in increased error in regions where ρ is not constant.

$\nabla \cdot \vec{E}$ in Diffusion Region

$\frac{\rho}{e}$ from $\operatorname{Div}(E)$ and $\operatorname{Div}(J x B / n e)$ agree well at the barycenter in the diffusion region.
$2^{\text {nd }}-\mathrm{O} \operatorname{Div}(\mathrm{JxB} /$ ne $)$ results indicate a gradient in the s / c region.

This leads to E reconstruction errors if large and unaccounted.

Requires a re-work of the constraints: $\nabla(\nabla \cdot \vec{E}) \neq 0$

Work in progress!

\vec{E} Field Reconstruction Limitations

$$
\nabla \times \vec{E}
$$

- $\nabla \times \vec{E}$ comes from the off-diagonals of the $\nabla \vec{E}$ tensor.
- \vec{E} measurement uncertainty of the curl is often greater than the true value (poor SNR).
- \vec{E} measurements can be corrected using $\dot{\vec{B}}$.

$$
\nabla \vec{E}=\left[\begin{array}{ccc}
\frac{d E_{x}}{d x} & \frac{d E_{y}}{d x} & \frac{d E_{z}}{d x} \\
\frac{d E_{x}}{d y} & \frac{d E_{y}}{d y} & \frac{d E_{z}}{d y} \\
\frac{d E_{x}}{d z} & \frac{d E_{y}}{d z} & \frac{d E_{z}}{d z}
\end{array}\right]=\left[\begin{array}{ccc}
0.23 & -0.01 & -1.20 \\
-0.81 & -0.52 & -0.67 \\
-1.95 & -3.26 & -7.09
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
0.23 & -0.41 & -1.57 \\
-0.41 & -0.52 & -1.95 \\
-1.58 & -1.97 & -7.09
\end{array}\right]\left[\frac{\mathrm{mV}}{10 \mathrm{~km}}\right]
$$

$\nabla \times \vec{E}$ Correction

Uncorrected

Purple: $-\nabla \times \vec{E}$ from $1^{\text {st }}$ order
Orange: $\frac{d B}{d t}$ at barycenter Other colors are $\frac{d B}{d t}$ at s / c
This correction allows for improved reconstruction, especially outside tetrahedron.

Reconstruction Applications

- Have demonstrated the 3D, physics-friendly reconstruction of $\vec{B}, \vec{J}, \vec{E}$ and $\dot{\vec{B}}$ fields.
- Now other quantities can be evaluated:

$$
\begin{aligned}
& \begin{array}{l}
u=\frac{1}{\mu_{0}} \vec{B} \cdot \vec{B} \\
\vec{S}=\frac{1}{\mu_{0}}(\vec{E} \times \vec{B}) \\
\vec{J} \cdot \vec{E}
\end{array} \\
& \vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
\end{aligned} \begin{aligned}
& \text { Leads } \\
& \text { to } \\
& \text { Poynting's } \\
& \text { Theorem }
\end{aligned} \begin{aligned}
& \text { Particle } \\
& \text { Tracing }
\end{aligned}
$$

Poynting's Theorem at Barycenter

Reconstructed Poynting Components ot Barycenter

Work in progress!

Poynting's Theorem in 3D

Force Field and Electron Tracing

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

- Force on particles (q, \vec{v})
 can be calculated.
- Particles measured by s/c can be traced backward to determine source region \& energy.
- Plot on left shows 100 eV electrons with a range of pitch angles from MMS2.

Streamlines: In-plane B
Vector Field: In-plane E

Force Field and Electron Tracing

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Summary

- The $2^{\text {nd }}$ order reconstruction method has advantages over $1^{\text {st }}$ order
- Consistent accuracy in \& around tetrahedron
- Adherence to Maxwell's equations
- These characteristics allow for applications to many 3D problems
- Poynting's theorem
- Particle tracing
- More to come...

