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Goal

• Reconstruct the 3D field to 2nd-order 
polynomial using the and at 4 s/c 
locations.

1st Order

2nd Order



1st-Order Parameter Overview
• Knowns: 12

3 𝐵 components x 4 s/c → 12

• Unknowns: 12
𝐵௜→ 3 Elements of 𝐵 at origin

𝜕𝐵௜௝→ 3x3 = 9 Elements of the 𝛻𝐵 tensor about origin

• Constraints: 0

1B1 1 1X 1Y 1Z B1
2B1 1 2X 2Y 2Z dB11
3B1 1 3X 3Y 3Z dB21
4B1 1 4X 4Y 4Z dB31
1B2 1 1X 1Y 1Z B2
2B2 1 2X 2Y 2Z dB12
3B2 1 3X 3Y 3Z dB22
4B2 1 4X 4Y 4Z dB32
1B3 1 1X 1Y 1Z B3
2B3 1 2X 2Y 2Z dB13
3B3 1 3X 3Y 3Z dB23
4B3 1 4X 4Y 4Z dB33

= x



2nd-Order Parameter Overview
• Knowns: 24

3 𝐵 components x 4 s/c→12
3 𝐽 components x 4 s/c→12

• Unknowns: 27
𝐵௜→ 3 Elements of 𝐵 at origin
𝜕𝐵௜௝→ 3x3 = 9 Elements of the 𝛻𝐵 tensor about origin
𝜕𝜕𝐵௜௝௞→ 3x3x3 = 27                Elements of the 𝛻𝛻𝐵 tensor about origin
𝜕𝜕𝐵௜௝௞ = 𝜕𝜕𝐵௝௜௞→ -9 Clairaut’s theorem for continuous functions
𝜕𝜕𝐵ଶଶ௞  = 0 → -3 Assume linear behavior in M-direction (NML system)

• Constraints: 4
𝛻 ȉ 𝐵 = 0 → 4 1 for traceless 𝛻𝐵 tensor; 3 to be true in all space: 𝛻(𝛻 ȉ 𝐵) = 0

24 + 4 - 27 = 1 more unknown (degree of freedom) is allowed.
A cubic term is incorporated to make the system solvable under all conditions.

8 unique cubic terms are used without affecting 
Each produces a similar result.



Reconstruction Method

• The linking matrix is between 24x24 to 31x31 depending on how the 
constraints are applied.

• The matrix is inverted to solve for the Taylor expansion coefficients.
• This is repeated for each of the 8 unique cubic terms.
• The 8 results are combined into one set of coefficients weighted inversely 

by the magnitude of the cubic parameter.

• The resulting coefficients allow for the approximation of & 
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Limitations
• Results degrade if the basis functions do not describe the 

fields.
– Small structures unresolved by the s/c greatly affect the results
– This is partially addressed by temporal filtering to focus on the 

spatial scale of interest: ௦௖ ௦௧௥௨௖௧௨௥௘

• Results degrade as approximations are made further from 
the s/c.
– Extrapolation errors are expected and are unavoidable
– Reconstruction of simulation data helps quantify this limitation

• These limitations are not unique to this method.



1st Order B Result Using Simulation

Fitting to B only

଴

↕ Good global fit

T.K.M.Nakamura+ 2018



2nd Order B Result Using Simulation

Fitting to B & J

଴

↕ Strongly focused

T.K.M.Nakamura+ 2018



Curl(B)/mo Comparison

↕ Simulation check

Scalar Linear+

Focused inside tetrahedronUnfocused



J Reconstruction Comparison

Linear
( solution) Linear+

↕ Simulation checkFocused inside tetrahedronUnfocused



Comparison

1st order B & J results violate Ampere’s law, even at the barycenter. 
Simulation and 2nd order reconstruction obey Ampere’s law.



Field Reconstruction

• E reconstruction is 
possible by applying the 
same method.

• Subtle differences exist
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Knowns Link Matrix Unknowns



Field Reconstruction Limitations

• Charge density is a new input parameter.

• It is approximated by the trace of the tensor.
• Currently, this scalar result is applied throughout the 

3D domain.
• This results in increased error in regions where is 

not constant.
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agree well at the barycenter 
in the diffusion region.

2nd–O Div(JxB/ne) results 
indicate a gradient in the s/c 
region.

This leads to E reconstruction 
errors if large and unaccounted.

Requires a re-work of the 

constraints: 

Work in progress!



Field Reconstruction Limitations

• comes from the off-diagonals of the 
tensor.

• measurement uncertainty of the curl is often 
greater than the true value (poor SNR).

• measurements can be corrected using .
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Correction
Uncorrected Corrected

Purple: - from 1st order
Orange: ௗ஻

ௗ௧

Other colors are ௗ஻

ௗ௧
at s/c 

This correction allows for improved reconstruction, especially outside tetrahedron.



Reconstruction Applications

• Have demonstrated the 3D, physics-friendly reconstruction 

of , , and fields.
• Now other quantities can be evaluated:

𝑢 =
1

𝜇଴
𝐵 ȉ 𝐵

𝑆 =
1

𝜇଴
𝐸 × 𝐵

𝐽  ȉ 𝐸

𝐹⃗ = 𝑞 𝐸 + 𝑣⃗ × 𝐵

Leads
to 
Poynting’s
Theorem

Particle
Tracing



Poynting’s Theorem at Barycenter

Work in progress!



Poynting’s Theorem in 3D

Work in progress!



Force Field and Electron Tracing

• Force on particles (q, ) 
can be calculated.

• Particles measured by s/c 
can be traced backward 
to determine source 
region & energy.

• Plot on left shows 100 eV 
electrons with a range of 
pitch angles from MMS2.

Streamlines: In-plane B
Vector Field: In-plane E

Work in progress!



Force Field and Electron Tracing

Work in progress!





Summary

• The 2nd order reconstruction method has 
advantages over 1st order
– Consistent accuracy in & around tetrahedron
– Adherence to Maxwell’s equations

• These characteristics allow for applications to 
many 3D problems
– Poynting’s theorem
– Particle tracing
– More to come…


