2nd Order Field Reconstruction: Method and Applications

Ivan Dors, R. B. Torbert, M. R. Argall,K. J. Genestreti, R. E. Denton,D. Payne, R. Strangeway, R. E. Ergun,B. L. Giles, J. L. Burch

Goal

• Reconstruct the 3D \vec{B} field to 2nd-order polynomial using the \vec{B} and \vec{J} at 4 s/c locations.

1st-Order Parameter Overview

• Knowns: **12**

3 \vec{B} components x 4 s/c \rightarrow 12

- Unknowns: **12**
 - $B_i \rightarrow 3$ Elements of \vec{B} at origin
 - $\partial B_{ij} \rightarrow 3x3 = 9$ Elements of the $\nabla \vec{B}$ tensor about origin

• Constraints: **0**

1B1		1	1X	1Y	1Z										B1
2B1		1	2X	2Y	2Z										dB11
3B1		1	3X	3Y	3Z										dB21
4B1		1	4X	4Y	4Z										dB31
1B2						1	1X	1Y	1Z						B2
2B2	_					1	2X	2Y	2Z					v	dB12
3B2	_					1	3X	3Y	3Z					^	dB22
4B2						1	4X	4Y	4Z						dB32
1B3										1	1X	1Y	1Z		B3
2B3										1	2X	2Y	2Z		dB13
3B3										1	3X	3Y	3Z		dB23
4B3										1	4X	4Y	4Z		dB33

2nd-Order Parameter Overview

- Knowns: 24
 - $3 \vec{B}$ components x 4 s/c \rightarrow 12
 - $3 \vec{J}$ components x 4 s/c \rightarrow 12
- Unknowns: 27

nents of \vec{B} at origin
nents of the $ abla ec B$ tensor about origin
nents of the $ abla abla ec{B}$ tensor about origin
raut's theorem for continuous functions
ume linear behavior in M-direction (NML system)
וו

• Constraints: **4** $\nabla \cdot \vec{B} = 0 \rightarrow 4$

1 for traceless $\nabla \vec{B}$ tensor; 3 to be true in all space: $\nabla (\nabla \cdot \vec{B}) = 0$

24 + 4 - 27 = 1 more unknown (degree of freedom) is allowed. A cubic term is incorporated to make the system solvable under all conditions. 8 unique cubic terms are used without affecting $\nabla \cdot \vec{B}$ Each produces a similar result.

Reconstruction Method

- The linking matrix is between 24x24 to 31x31 depending on how the constraints are applied.
- The matrix is inverted to solve for the Taylor expansion coefficients.
- This is repeated for each of the 8 unique cubic terms.
- The 8 results are combined into one set of coefficients weighted inversely by the magnitude of the cubic parameter.
- The resulting coefficients allow for the approximation of $\vec{B}(\vec{x}) \& \vec{J}(\vec{x})$

$$B_{i}'(\vec{x}) \cong B_{i}\Big|_{0} + \sum_{k} \partial B_{ki}\Big|_{0} x_{k} + \frac{1}{2} \sum_{kl} \partial \partial B_{kl}\Big|_{0} x_{k} x_{l}$$

Limitations

- Results degrade if the basis functions do not describe the fields.
 - Small structures unresolved by the s/c greatly affect the results
 - This is partially addressed by temporal filtering to focus on the spatial scale of interest: $\tau \sim l_{sc} / v_{structure}$
- Results degrade as approximations are made further from the s/c.
 - Extrapolation errors are expected and are unavoidable
 - Reconstruction of simulation data helps quantify this limitation
- These limitations are not unique to this method.

1st Order B Result Using Simulation

2nd Order B Result Using Simulation

Curl(B)/ μ_o Comparison

Unfocused

J Reconstruction Comparison

Unfocused

 $\left(\nabla \times \vec{B}/\mu_o - \vec{J}\right)$ Comparison

1st order B & J results violate Ampere's law, even at the barycenter. Simulation and 2nd order reconstruction obey Ampere's law.

\vec{E} Field Reconstruction

$$\begin{array}{c} 4 \overrightarrow{B} \\ 4 \overrightarrow{J} \end{array} \bigoplus \begin{array}{c} \nabla \times \overrightarrow{B} = \mu_0 \overrightarrow{J} \\ \nabla \cdot \overrightarrow{B} = 0 \end{array} \end{array} \bigoplus \begin{array}{c} \left[\overrightarrow{B} \right]_q \\ \left[\overrightarrow{J} \right]_l \end{array}$$

Knowns

Link Matrix

Unknowns

$$4 \overrightarrow{E}_{4 \overrightarrow{B}} \hookrightarrow \overrightarrow{P} \times \overrightarrow{E} = -\overrightarrow{B}_{0}$$
$$\overrightarrow{P} \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_{0}} \xrightarrow{\left[\overrightarrow{E}\right]_{q}}$$
$$\left[\overrightarrow{B}\right]_{l}$$

- E reconstruction is possible by applying the same method.
- Subtle differences exist $\nabla \cdot \vec{E}$ $\nabla \times \vec{E}$

\vec{E} Field Reconstruction Limitations $\nabla \cdot \vec{E}$

- Charge density is a new input parameter.
- It is approximated by the trace of the $\nabla \vec{E}$ tensor.
- Currently, this scalar result is applied throughout the 3D domain.
- This results in increased error in regions where ρ is not constant.

$\nabla \cdot \vec{E}$ in Diffusion Region

 $\frac{\rho}{e}$ from Div(E) and Div(JxB/ne) agree well at the barycenter in the diffusion region.

2nd–O Div(JxB/ne) results indicate a gradient in the s/c region.

This leads to E reconstruction errors if large and unaccounted.

Requires a re-work of the constraints: $\nabla \left(\nabla \cdot \vec{E} \right) \neq 0$

\vec{E} Field Reconstruction Limitations $\nabla \times \vec{E}$

- $\nabla \times \vec{E}$ comes from the off-diagonals of the $\nabla \vec{E}$ tensor.
- \vec{E} measurement uncertainty of the curl is often greater than the true value (poor SNR).
- \vec{E} measurements can be corrected using $\dot{\vec{B}}$.

$$\nabla \vec{E} = \begin{bmatrix} \frac{dE_x}{dx} & \frac{dE_y}{dx} & \frac{dE_z}{dx} \\ \frac{dE_x}{dy} & \frac{dE_y}{dy} & \frac{dE_z}{dy} \\ \frac{dE_x}{dz} & \frac{dE_y}{dz} & \frac{dE_z}{dz} \\ \end{bmatrix} = \begin{bmatrix} 0.23 & -0.01 & -1.20 \\ -0.81 & -0.52 & -0.67 \\ -1.95 & -3.26 & -7.09 \end{bmatrix} \rightarrow \begin{bmatrix} 0.23 & -0.41 & -1.57 \\ -0.41 & -0.52 & -1.95 \\ -1.58 & -1.97 & -7.09 \end{bmatrix} \begin{bmatrix} \frac{mV}{10km} \end{bmatrix}$$

$\nabla \times \vec{E}$ Correction

Uncorrected

Purple: $-\nabla \times \vec{E}$ from 1st order Orange: $\frac{dB}{dt}$ at barycenter Other colors are $\frac{dB}{dt}$ at s/c This correction allows for improved reconstruction, especially outside tetrahedron.

Reconstruction Applications

- Have demonstrated the 3D, physics-friendly reconstruction of \vec{B} , \vec{J} , \vec{E} and $\dot{\vec{B}}$ fields.
- Now other quantities can be evaluated:

$$u = \frac{1}{\mu_0} \vec{B} \cdot \vec{B}$$
Leads
to

$$\vec{S} = \frac{1}{\mu_0} \left(\vec{E} \times \vec{B} \right)$$
Poynting's

$$\vec{J} \cdot \vec{E}$$
Theorem

$$\vec{F} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$
 Particle
Tracing

Poynting's Theorem at Barycenter

Force Field and Electron Tracing $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

Streamlines: In-plane B Vector Field: In-plane E

- Force on particles (q, \vec{v}) can be calculated.
- Particles measured by s/c can be traced backward to determine source region & energy.
- Plot on left shows 100 eV electrons with a range of pitch angles from MMS2.

Force Field and Electron Tracing $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

Summary

- The 2nd order reconstruction method has advantages over 1st order
 - Consistent accuracy in & around tetrahedron
 - Adherence to Maxwell's equations
- These characteristics allow for applications to many 3D problems
 - Poynting's theorem
 - Particle tracing
 - More to come...