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FTE: Initial In-situ Observation
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FTE: B_ polarity representing a motion - 1
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FTE: B_ polarity representing a motion - 2

FLUX TRANSFER EVENTS
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« Standard polarity (positive => negative; X): predominantly in
the northern hemisphere

* Reverse polarity (negative => positive; ©): predominantly in
the souhern hemisphere

* Indicative of subsolar reconnection as a generation mechanism
(even when there is a dominant IMF By condition, leading to
guide-field reconnection [Russell+, 1985])



FTE: IMF Bz dependence

340 FTEs from ISEE 1 [Kawano & Russell, 1997a] FTEs from Cluster during IMF +Bz[Fear+, 2005]
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* Subsolar and pre/post-noon FTEs are observed mainly during southward IMF
[Kuo+ 1995; Kawano & Russell, 19973,b]
e Post-terminator FTEs are associated with strongly northward IMF [Kawano &
Russell, 1997a,b] <= high-latitude reconnection for IMF +Bz
* FTE event from Cluster shows an tailward/equatorward motion during IMF +Bz
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FTE: IMF By dependence
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B, dependence during IMF -Bz
[Kawano & Russell, 1997a; left]

[Fuselier+, 2016; right]
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Southward and slightly
northward IMF: Most
of events are explained
by a tilted subsolar
component RX

* More northward IMF:
Cusp reconnection
explains polarities and
IMF By dependence.
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FTE: Motion — Magnetosheath Flow Effect
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118 FTE statistics from Cluster show consistency in
both direction and speed with either V1, or V<
calculated from the Cooling model [Fear+, 2007]
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FTE: Cusp responses

DMSP F10 28 March 1992
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» Steady-state reconnection leads to dispersion pattern of precipitating ions in
the cusp region (lowest time of flight from X, for highest energy ions): For
subsolar RX, decrease in ion energies with latitude

* Pulses in reconnection cause discrete steps (red arrows) in ion dispersion

* Evidence for the fact that reconnection takes place in a series of bursts,

therefore, producing FTEs
[Courtesy to R. Fear]
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FTE: Ionospheric Responses

At the footprints of newly
opened magnetic field lines
Optically, as Poleward
Moving Auroral Forms
(PMAF) [Sandholt+ 1986;
1992]

In radar, as Pulsed
lonospheric Flows or
Poleward Moving Radar
Auroral Forms [Provan+
1998; McWiliams+, 2000]
Conjugate studies between
In-situ and ground-based
observations [Elphic+ 1990;
Amm+, 2005; Wild+ 2005;
2007]

Neudegg+ [2001]: In-situ (a)
+ Radar (b) + Optical (c-f)

conjunctions
[Courtesy to R. Fear]
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FTE: Other Reconnection-based Models

Fear+ [2008]
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Elbow-shaped flux Multiple X-line FTEs
bundle FTEs Lee & Fu [1985]
Russell & Elphic [1979]

Single X-line FTEs
Southwood [1988]
Scholer [1988]



FTE: Seasonal dependence (SMXR model)

(a) No dipole tilt case

(b) Large dipole tilt case
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In presence of dipolar tilt, FTEs
are formed by sequential
multiple X-line reconnection
(SMXR)

FTEs move preferentially to
the winter hemisphere

SMXR: not present in all
related simulation works
Korotova+ [2008] showed FTEs
detected by Interball-1 around
June solstice in 1996-1999 are
found exclusively in winter
hemisphere
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FTE: Signatures of Elbow-shaped flux-bundle FTEs
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Formed by localized patchy reconnection

B topology:

Topologically open

The spiral magnetic field lines connect the
magnetosheath magnetic field to either the
northern or southern high-latitude
ionosphere

Their magnetosheath and magnetospheric
ends connect through a circular hole (with a
diameter of ~1 R;) on the magnetopause

Extent:

Having narrow azimuthal (dawn-dusk)
extents

Particle signature:

Bidirectional electrons at the edge of FTEs
Mostly unidirectional ions in the rearward
edge of the FTE [Varsani+, 2014]

Hot and more isotropic electrons in the FTE
core



FTE: Signatures of Single X-line Model
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B topology:

Topologically open; no helical flux rope

May contain a core guide field

The newly reconnected magnetic field lines
simply connect the magnetosheath to either
the northern or southern hemisphere.

Extent:

Can extend azimuthally over many R

Particle signature:

Reconnection jets flow away from the X-line
on the edges of FTEs

Thermalized plasma populate within the core
The particle signatures similar to Elbow-
shaped FTEs

Lockwood and Hapgood [1998]: continuous
variation in the ion distribution function
between the event core (reconnected earlier)
and the draped field lines (reconnected later)



FTE: Signatures of Multiple X-line Model - 1

\ Via simultaneous or sequential multiple X-lines

B topology:
* Possibly topologically closed
* Mixed magnetic field topologies, e.g., open
field lines connecting the northern or southern
hemisphere to the magnetosheath, closed field
\ lines connecting both hemispheres, and purely
magnetosheath fields [Pu+ 2013; Zhong+, 2013]
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FTE: Signatures of Multiple X-line Model - 2
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Extent:
e Can extend azimuthally over many R;

Particle signature:

 Two ion jets converging toward the center of
such FTEs [Hasegawa+, 2010; @ieroset+, 2011]

* Heated magnetosheath electrons flowing both
parallel and antiparallel to B [Hasegawa+, 2010]

magnetosheath

THEMIS path relative to structure

magnetosphere




FTE: Crater FTEs
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More complex shape in | B| enhancement:
 ‘M’-shaped: central depressionin |B|

 ‘W’-shaped: strong core bounded by
weak |B|
Scenarios:

* Pressure pulses-causing transient
relocation of the spacecraft across the
boundary layer with respect to an FTE
[Sibeck & Smith, 1992; Owen+, 2008]

* Encounters with the separatrix resulting
in the crater-like B variations with
bipolar B, across the event [Farrugia+,
2011] msphere

=) reconnection jet
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FTE: Multi-spacecraft observations before MMS

Distinguishing among different models:

Fear et al. [2008] used tetrahedral Cluster observations to describe an FTE with a much larger
azimuthal than north-south extent, which is inconsistent with the elbow-shaped flux tube model.

Dunlop et al. [2005] presented Cluster and TC-1 observations of a pair of FTEs propagating
northward and southward away from the reconnection site, consistent with single X-line model.

Hasegawa et al. [2010] reported THEMIS observation of an FTE between two converging jets, and
therefore suggested multiple X-line model (Grad-Shafranov reconstruction using multi-s/c
measurements).

Farrugia et al. [2011] reported a single X-line crater FTE with multiple layers on the basis of their
magnetic, electric, and plasma signatures from the four Cluster spacecraft.

Magnetic topology using B-field and electron measurements on improved temporal resolution:

Owen et al. [2001] used Cluster-FGM/PEACE observations to define the magnetic field
connectivity of the substructure of FTEs inferred from the magnetic field and electron signatures.

@Dieroset et al. [2011] presented observations of electrons that were not trapped within the FTE,
demonstrating that the event was three-dimensional and had an open magnetic field topology.

Pu et al. [2013], Zhong et al. [2013] used energy-dependent electron pitch angle distributions to
show mixed magnetic field topologies of a multiple X-line FTE.

Varsani et al. [2014] identified the multi-layer interior and surrounding structures of a crater FTE
based on the electron pitch angles using 125 ms observations of Cluster-PEACE measurements
assuming that the electrons were gyrotropic.



FTE: Multi-spacecraft observations before MMS
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Magnetic topology using B-field and electron measurements on high time resolution:

e Varsani et al. [2014] identified the multi-layer interior and surrounding structures of a crater FTE
based on the electron pitch angles using 125-ms observations of Cluster-PEACE measurements
assuming that the electrons were gyrotropic.
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FTE: After MMS - 1. Substructure
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FTE: After MMS - 1. Substructure
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FTE: After MMS - 2. Force balance
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=> B curvature (green) is balanced by B pressure force (orange)
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» B curvature is balanced by B pressure force

FTE3 (right)

» B curvature is NOT balanced by B pressure force
» lon pressure force (cyan) is dominant
> Force balanced between JxB and V.P
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[Zhao et al., 2016]
Force-free flux rope [Lundquist, 1950]: JxB =0, i.e., ) parallel to B
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FTE: After MMS - 2. Force Balance

N S E[)
=SREC e e It —— =8,
3852:_ _EBN
o 1E- Py
528 035 P
gﬂgi 0.2 Pp
o 8216: B
JE §§181§§_ B dot gradB),
E% ?18_% = (B dot gradB),,
oo -2x1Q°
< :63519:18 B dot gradB),
o gﬂﬁg gracP ),
Euﬁ X - grade)M
e T N T Sy,
[Hwang+, in prep.]
Force balance around FTEs:
_VP * Steady-state FTEs:
/\/TO’Tﬂ\ . .
» ~ R v’ Magnetic curvature force is
L H B (B-V)B _ balanced by the pressure force

1, ~Vhoa [Elphic, 1998; leda+, 1998]
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FTE: After MMS - 3. Small scale FTEs

* During B,-reconnection, the electron
current layers near the magnetic x-line
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FTE: After MMS - 3. Small-scale FTEs

MMS barycenter
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Scale sizes: 2.5-6.8 d, (> 187.5 km)

Supporting observations:

* Converging ion jets toward the FTE center.

Localized B

curvature

Co-existence of mixed magnetic topology
mainly balanced by Grad_P
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FTE: After MMS - 4. Coalescence of small-scale FTEs

— mms1
- mmg2
— mms3
mms4

B, (nT)

B, (nT)

B, (nT)
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V, (km/s) V, (km/s)

Time (s, since 11:02:50.0 UT/08-Dec-2015)
* Scale sizes: 1.3-8.6 d;; 91-609 km

* Induced current layer between Fr2 and Fr3:

» Carried by electrons
» ~1d, thickness

Also, Zhou+ [2017]: an electron-scale current
layer at the interface of two coalescing
macroscopic (with sizes of ~1 R) flux ropes.
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Velocity-shear induced FTE
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Velocity-shear induced FTE: electron-vortex induced FTE
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Velocity-shear induced FTE: 3-D PIC simulation
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[Nakamura+, 2017; Courtesy to T.K.M Nakamura]
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[Courtesy to T.K.M Nakamura]



KHV+FTE: FTE detected at the KHV boundary
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mms4
fpi

KHV+FTE FTE detected at the KHV boundary
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Similar to Nakamura+ [2017] and Eriksson+ [2016]...

» Parallel electron heating
» no ion/electron in-plane jets

» Current carried by electrons
» Non-zero J dot E’

“Strong northward electron jets”



KHV+FTE: FTE detected at the KHV boundary
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Summary

FTE

Knowns

* General structure, motion, and extent

* IMF dependence

* Different models leading to different topology
* Substructure (partly)

Unknowns

* Substructure (further details, variations)

* Energy conversion (partly answered by MMS)

* What regulates the contraction or expansion of
FTEs? (related to force balance?)

* The relationship with ion/electron flow vortex



Outline

1. FTE: general knowns
2. Reconnection-based FTE models
3. New findings of FTE after MMS

4. Velocity-shear-induced FTE
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