A Tutorial

Progress toward resolving
 Magnetic Reconnection Rate Problem

Yi-Hsin Liu Dartmouth

Collaborators: M. Hesse, F. Guo, W. Daughton, H Li, P. Cassak, M. Shay, T. Nakamura,
S. Wang, L.-J. Chen et al. \& MMS team

Outlines

\star Past —Present
\star MMS observations
\star Summary \& Future (Unsolved questions)

Past — Present

Magnetic Diffusion (<1953) (ie., Dungey, 1953)

$$
\begin{aligned}
& \text { Induction eqn: } \\
& \frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\sqrt{\mathbf{B}})+\eta \nabla^{2} \mathbf{B} \\
& \rightarrow B=B_{0} \operatorname{erf}[z / \sqrt{4 \eta t}]
\end{aligned}
$$

- Becomes broader \& broader over time.... No steady state...
- Too slow to explain the dissipation of magnetic energy

Magnetic Reconnection

Magnetic tension \& Alfvén waves

plasma inertia: $\quad n m_{i} \frac{d \mathbf{V}}{d t}$

Alfvén wave

vibration of guitar strings

(Youtube: iphone 4 inside a guitar oscillation! VERY COOL!)
Alfvén speed

$$
\rightarrow V_{A} \sim \frac{B}{\sqrt{4 \pi n m_{i}}}
$$

Sweet-Parker solution (1957)

mass conservation: $\quad \nabla \cdot(n \mathbf{V}) \simeq 0$

$$
\rightarrow V_{\text {in }} L \simeq V_{\text {out }} \delta
$$

momentum eq.: $\quad \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{\substack{4 \pi \\ \text { tension }}} \simeq n m_{i} \mathbf{V} \cdot \nabla \mathbf{V} \quad \rightarrow V_{\text {out }} \simeq \frac{B}{\sqrt{4 \pi n m_{i}}}=V_{A}!$

$$
\text { normalized reconnection rate } \rightarrow \quad R \equiv \frac{V_{i n}}{V_{A}} \sim \frac{\delta}{L}
$$

- However, this model has a small δ / L, the rate is also too small to explain the time-scales in solar flare. (Parker 1963)
- To explain the flares, it requires R~0.I. (Parker 1973)

Petschek solution (1964)

Reconnection rate is much larger if $\quad R \sim \frac{\delta}{L} \uparrow$

- However, this is not a self-consistent solution. (Sato \& Hayashi, 79; Biskamp, 86)
- In fact, standing switch-off slow shocks can hardly develop in fully kinetic simulations. (Liu+ 2011,2012$)$

GEM Reconnection Challenge (2001)

(Birn+, 200I)

Dispersive wave picture
(Sonnerup 79; Shay+ 98; Rogers+ 01 ; Drake+ 08)

Standing Dispersive Wave Picture

- outflow is driven by magnetic tension force

Without the Hall term...
Alfvén wave
$\omega \propto k$
$\rightarrow u_{\text {out }} \sim \omega / k \sim$ constant

- collapses back to a long Sweet-Parker layer

With the Hall term...

$$
\begin{array}{cc}
\text { Whistler wave } & \left(b_{g}=0\right) \\
\text { Kinetic Alfvén wave } & \left(b_{g} \neq 0\right)
\end{array}
$$

$\omega \propto k^{2}$

$$
\rightarrow u_{\text {out }} \sim \omega / k \propto k
$$

— stays opened!

- This seems to explain the difference of reconnections in resistive-MHD vs. Two-fluid/Hybrid/PIC models. (Birn+ 2001, Rogers+ 200I, Shay+ 1998, Mandt+ 1994)

GEM Reconnection Challenge (2001)

(Birn+ 2001)

However, electron-positron (PIC):
(Bessho \& Bhattacharjee, 05; Daughton+ 07; Swisdak+ 08; Liu+ 09)

To be solved.

QI:How to explain the fast reconnection rate value of order 0.1 in different systems?
-- including PIC, hybrid, Hall-MHD, MHD with a localized resistivity...etc
*clue: can not be the diffusion-scale physics!

Two extreme limits...

In the small δ / L limit, $R \sim \delta / L \rightarrow 0$

How about the large δ / L limit?
Separatrix

It turns out that when $\delta / L \rightarrow 1, \quad R \rightarrow 0$!
There must be a maximum in between these two limits~

The Key: Geometry \& Force balance!

In the large diffusion region aspect ratio, δ / L, limit

$$
\begin{array}{ll}
\text { tension } & \text { magnetic pressure } \\
\frac{\mathrm{B} \cdot \nabla \mathbf{B}}{4 \pi} \simeq \frac{\nabla\left(B^{2}\right)}{8 \pi} & +n m_{i} \mathbf{V} \cdot \nabla \mathbf{V} \\
\text { @ inflow region } & \text { @ outflow region }
\end{array}
$$

\rightarrow reduction of the reconnecting field!!!
$\rightarrow R \downarrow$
\rightarrow reduction of the outflow speed!!!
$\rightarrow R \downarrow$

- Constraints imposed at the inflow \& outflow regions (upper) bound the rate!

Back-of-the-envelope calculation...

(a)

(b)

Introduce the scale-separation~
analyze the force-balance at point I

$$
\rightarrow B_{z m}(S)
$$

(c)

analyze the force-balance at point 2
$\rightarrow V_{\text {out }, m}(S)$

Connecting these two regions to get the rate~
$E_{y}=B_{z m} V_{o u t, m} / c$

Explanation of the fast rate ~ 0.1
-- Geometrical consideration!

$$
R_{0} \equiv \frac{c E_{y}}{B_{x 0} V_{A 0}}=\left.\left(\frac{B_{z m}}{B_{x 0}}\right)\left(\frac{V_{o u t, m}}{V_{A 0}}\right) \simeq \frac{\delta}{L}\right|_{\substack{ \\1+(\delta / L)^{2} \\ \text { reduction of } \\ \text { reconnecting } B}} ^{2}
$$

- Fast rate $R \sim O(0.1)$ is an upper bound value.
- Reconnection tends to proceed near the most efficient state, which has $R \sim O(0 . I)$.
- Nicely, rate is insensitive to δ / L near this state.

Asymmetric Reconnection

$2 L$

Two-fluid simulations

Cassak \& Shay GRL (2008)
Cassak-Shay formula

$$
E_{C S}=2\left(\frac{B_{1} B_{2}}{B_{1}+B_{2}}\right)\left(\frac{V_{\text {out }}}{c}\right)\left(\frac{\delta}{L}\right)_{e f f}
$$

$$
\text { where } \quad \frac{V_{\text {out }}}{c}=\sqrt{\frac{B_{1} B_{2}}{4 \pi}\left(\frac{B_{1}+B_{2}}{B_{1} \rho_{2}+B_{2} \rho_{1}}\right)}
$$

Cassak \& Shay, PoP (2007)

$$
\text { and } \quad(\delta / L)_{e f f} \simeq 0.1
$$

[^0]MMS observations

MMS observations

December 14,2015 event: $\mathrm{B}_{\mathrm{g}} \sim 0.2, \mathrm{~B}_{\mathrm{L} 2} / \mathrm{B}_{\mathrm{LI}} \sim 1.3, \mathrm{n}_{2} / \mathrm{n}_{1} \sim 6.8$

- An uniform electric field over at least 8 electron skin depths corresponds to a normalized rate ~ 0. I.
- The rate of the October $16,20 \mathrm{I} 5$ event was estimated to be ~ 0.3.

MMS observations

Torbert' 7/11 event

- Measuring the aspect ratio of EDR~ 0.I-0.2
- Using timing analysis to get L.
- Using current density to get δ.

MMS observations

7/11 event

Measuring Em_{M}

—Tried 14 different LMN coordinate systems

$$
R \sim 0.18 \pm 0.035
$$

Measuring EM

—Took advantage of the close comparison with 2D PIC simulations~

MMS observations

- new technique in measuring the rate

(Nakamura+ JGR 2018)

$$
E_{r} \sim-\frac{(\boldsymbol{\Delta} \boldsymbol{X} \times \boldsymbol{B})_{\boldsymbol{y}}}{\Delta t} \sim\left[-\left(\boldsymbol{V}_{\mathrm{tim}}-\boldsymbol{V}_{c}\right) \times \boldsymbol{B}\right]_{y^{\prime}}
$$

- Measuring the flux difference at separatrix to infer the reconnection rate remotely!

MMS observations

- new technique in measuring the rate

- Inferring reconnection rate from particle distributions at the diffusion region.
- E_{R} accelerates electrons in the out-of-plane $(-y)$ direction.
— $R \sim 0.22-0.28$ for the $7 / \mathrm{II}$ event.

Summary \& future (unsolved questions)

Summary \& future (unsolved questions)

$\star 0.1$ is an upper bound value.

\star What is the localization mechanism in the standard regime?

- Why is MHD with an uniform resistivity so different? (the only exception.?)
- While a localization mechanism is needed for fast reconnection, different systems may have different localization mechanisms.

Summary \& future (unsolved questions)

\star Turbulence!? if yes, how does it affect reconnection rate?

- and how to measure the rate in a turbulent sheet using MMS???
p.s. be cautious about the periodic boundary condition in small simulations.
(Liu+ JGR 20I8)

Turbulence

$$
V_{\mathrm{rec}}=V_{A} \min \left[\left(\frac{L}{l}\right)^{1 / 2},\left(\frac{l}{L}\right)^{1 / 2}\right]\left(\frac{v_{l}}{V_{A}}\right)^{2} .
$$

(Kowal+ APJ 2009,
Lazarian \& Vishniac, 1999)

PIC- asymmetric

(Le+, PoP 2018)

- Self-generated turbulence in 3D sheet does NOT change the rate much~

Backup slides

Plasmoids (i.e., secondary tearing modes)

resistive-MHD when η is very small

(a) 0.05

- (my opinion) Tearing may provides the localization, enhancing the rate, but cannot explain the fast rate value $\sim \mathrm{O}(0.1)$.

3D nature

shortest possible x-line extent?

2D oblique planes

- The system tries to maximize the rate.?

- Rate drops when the x-line extent is too short ($<10 d_{\mathrm{i}}$) - shortest possible BBF!?
- Can explain the dawn-dusk asymmetry @ Mercury!

Explanation of the opposite dawn-dusk asymmetry at Earth \& Mercury's magnetotails

- An argument based on the dawn-ward flux transport \& reconnection physics.

DivPe and the role of reconnection electric field

$$
\begin{aligned}
E_{y} & =-\frac{1}{n_{e} e}\left(\frac{\partial P_{x y e}}{\partial x}+\frac{\partial P_{y z e}}{\partial z}\right) \\
E & \approx \frac{1}{2 e n} r_{L}^{2} \frac{\partial v_{x}}{\partial x} \nabla^{2}\left(m n v_{y}\right)
\end{aligned}
$$

(Hesse+ Space Sci. Rev. 20II, tested by R. Nakamura 2018)

- Accelerates the current carriers

$$
\begin{aligned}
-\frac{\partial}{\partial t} e n_{e} v_{e y}= & \frac{e^{2} n_{e}}{m_{e}} E_{y}+\frac{e^{2} n_{e}}{m_{e}} v_{e z} B_{x}-\frac{e^{2} n_{e}}{m_{e}} v_{e x} B_{z} \\
& +\frac{e}{m_{e}}\left(\frac{\partial P_{y z e}}{\partial z}+\frac{\partial P_{x y e}}{\partial x}\right)+e \nabla \cdot n_{e} \vec{v}_{e} v_{e y} .
\end{aligned}
$$

\checkmark Heats the sheet plasma

$$
\begin{gathered}
\frac{\partial p}{\partial t}=-\nabla \cdot(\vec{v} p)-\frac{2}{3} \sum_{l} P_{l l} \frac{\partial}{\partial x_{l}} v_{l}-\frac{1}{3} \sum_{l, i} \frac{\partial}{\partial x_{i}} Q_{l i i}-\frac{2}{3} \sum_{\substack{l, i \\
l \neq i}} P_{l i} \frac{\partial}{\partial x_{i}} v_{l} . \\
\text { (Hesse+ PoP 20I8) }
\end{gathered}
$$

The future needs new bloods! i.e., I need students \& postdocs....

国 $\cdots \vee$ 内 Q Dartmouth physics graduate apply \rightarrow
DARTMOUTH

								D
	DEPARTMENT OF							
	Physics and Astronomy							
\%	UNDERGRADUATE	GRADUATE	FOREIGNSTUDY	RESEARCH	RESOURCES	NEWS \& EVENTS	PEOPLE	Q

Financial Aid
Degree Requirements

[^0]: Liu+ GRL (2018)

