Energy dissipation and particle acceleration during reconnection

J. F. Drake University of Maryland
M. Swisdak University of Maryland
J. Dahlin GSFC
T. D. Phan U.C. Berkeley

Energy release during reconnection

- The change in magnetic topology for reconnection takes place in the "diffusion" region
 - A very localized region around the x-line
 - This is not where most of the magnetic energy is released

- Energy release primarily takes place downstream of the xline where newly-reconnected field lines relax their tension
- How is magnetic energy dissipated in the reconnection exhaust?
 - What about the Zenitani et al dissipation measure, which peaks in the diffusion region and not in the exhaust?

The dissipation measure

• Zenitani et al proposed a dissipation measure that is defined by writing the dissipation in the electron frame

$$\vec{J} \bullet \vec{E}' = \vec{J} \bullet \left(\vec{E} + \frac{1}{c} \vec{v}_e \times \vec{B} \right)$$

• This dissipation parameter is effective in defining the location of the dissipation region

Oscillatory dissipation from MMS observations

• MMS data revealed that the electron frame dissipation could be very intense and could take on positive and negative values (Burch et al 2018)

• Negative excursion due to electron bounce motion in the intense E_N at the magnetopause (Swisdak et al 2018)

Ions dominate energy gain in magnetosphere observations Hoshino et al '98

- Ion energy gain from Fermi reflection
 - leads to large parallel heating of ions
 - Measured throughout the magnetosphere
- Measured scaling of ion temperature consistent with Fermi reflection (Phan et al 2014) $\Delta T_i \sim 0.13 m_i c_A^2$
- Ion energy gain would be zero in the ion moving frame

Hoshino et al '98 Gosling et al '05 Phan et al '07 Eastwood et al '13

Basic mechanisms for particle energy gain during reconnection

• In the guiding center limit

$$\frac{d\varepsilon}{dt} = qv_{\parallel}E_{\parallel} + q\vec{v}_{c} \bullet \vec{E} + \mu \frac{\partial B}{\partial t} + q\vec{v}_{B} \bullet \vec{E}$$

- Curvature drift $\left(\sim J_{\perp} \bullet E_{\perp}\right)$
 - Slingshot term (Fermi reflection) increases the parallel energy

- Grad B drift
 - Betatron acceleration increases perpendicular energy μ conservation

$$v_B = \frac{v_\perp^2}{2\Omega} \vec{b} \times \frac{\vec{\nabla}B}{B} \qquad \qquad \mu = \frac{mv_\perp^2}{2B}$$

Electron heating during reconnection: dependence on guide field

- Carry out PIC simulations of reconnection with a range guide fields $d_i = \frac{c}{\omega_{pi}}$
- Focus here on 2D -- 819.2d_i x 409.6d_i
 - Compare all of the heating mechanisms
 - Dahlin et al '14, '17

Electron heating mechanisms: weak guide field

- Slingshot term dominates (Fermi reflection)
- Parallel electric field term small a surprise
- Grad B term is an energy sink
 - Electrons entering the exhaust where B is low lose energy because μ is conserved.

Electron heating mechanisms: strong guide field

• Fermi and parallel electric field term dominate

- Longer current layers where $E_{\parallel} \neq 0$ with a guide field

Electron spectral anisotropy

- The dominant acceleration mechanisms accelerate electrons parallel to the local magnetic field Fermi slingshot and E_{\parallel}
 - Extreme anisotropy in the spectrum of energetic electrons

Electron heating: dependence on the guide field

- Fermi reflection dominates for weak guide field
 - Drops off sharply with increasing guide field
 - Magnetic field radius of curvature increases with guide field
- E_{\parallel} dominates for strong guide field
 - Why does E_{\parallel} heating increase with the guide field?
- Trend consistent with Wilder et al. 2018

Dahlin et al '16

Spatial distribution of heating rate from Fermi reflection

- Electron heating rate from Fermi reflection
 - Fills the entire exhaust
 - Not localized to narrow boundary layers at small spatial scales
 - Dissipation in collisionless plasma is very different from that in fluids

Spatial distribution of heating from E_{\parallel}

- E_{\parallel} heating localized around the x-line
 - Very little net heating from electron holes along the separtrices
- Current layers become more elongated with incresing guide field

Production of energetic electrons: versus guide field

- Compare the production of energetic electrons versus the strength of guide field
 - Weak to modest guide field Fermi dominates
 - Large guide field E_{\parallel} dominates
- Virtually no energetic particles produced in strong guide field reconnection
- Parallel electric fields are not the driver of the most energetic electrons

Dahlin+'17

Diagnosing reconnection in turbulent environments

- In the solar wind and in the magnetosheath downstream of a parallel bow shock there are many current layers
 - Diagnosing reconnection is challenging even in 2D simulations of turbulence
 - Flux surfaces don't exist in 3D reconnecting systems
 - Are current layers undergoing reconnection?

Particle acceleration in 3D reconnection

- In a 3D system with a guide field magnetic reconnection becomes highly turbulent (Daughton et al. '11)
 - No magnetic islands or flux surfaces
 - Chaotic field line wandering and associated particle motion
 - Diagnosing reconnection is a challenge

Establishing reconnection in a turbulent system

• A measure of the rate of magnetic energy release and particle acceleration is the parameter

$$\vec{\kappa} \bullet \vec{V}_{ExB} = (\vec{b} \bullet \vec{\nabla} \vec{b}) \bullet \frac{cE \times B}{B^2}$$

- Dominantly positive and a reconnecting system and negative in a dynamo systems
- The dominance of positive values establishes that particle acceleration in a turbulent reconnection is a first order Fermi process $PDE of (u_{5} \cdot \kappa), 0 t = 40$

Dahlin et al '17

Frame invariance of magnetic reconnection measure in contracting islands

- What happens to $\vec{\kappa} \cdot \vec{V}_{ExB}$ under frame shifts?
 - A single bent field is sensitive to a frame shift

- Contracting islands are not sensitive to frame shifts
 - The sum of $\vec{\kappa} \cdot \vec{V}_{ExB}$ from the two ends is invariant
 - Perhaps the mean flow in a system with turbulent reconnecting islands does not impact the reconnection measure

Conclusions

- Most of the energy release during reconnection takes place in the reconnection exhaust
 - The plasma frame (electron or ion) dissipation measure is not adequate to measure energy conversion
 - The dominant heating mechanism for electrons is controlled by the guide field
 - Weak guide field Fermi reflection $(J_{\perp} \bullet E_{\perp})$
 - Strong guide field parallel electric field $(J_{\parallel}E_{\parallel})$
- In turbulent systems can diagnose reconnection activity with the scalar parameter

$$\vec{\kappa} \bullet \vec{V}_{ExB} = (\vec{b} \bullet \vec{\nabla} \vec{b}) \bullet \frac{c\vec{E} \times \vec{B}}{B^2}$$

- Potentially useful in the turbulent magnetosheath and the solar wind or anywhere
- No need to carry out uncertain coordinate transformations